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Abstract. Duplex stainless steel (DSS) material with grade of AISI Duplex-2205 show a 

decrease performance under aggressive environment which may lead to unanticipated failure 

due to poor surface properties. Therefore, the surface modification of this material is 

important to increase the hardness and wear behavior for various applications in the 

automotive, aerospace and oil and gas industries. The surface modification using SiC ceramic 

powder with particle size of 60 µm by TIG torch technique has been developed on the surface 

of AISI Duplex-2205. The TIG torch was employed at different arc energy of 0.480, 0.768 

and 1.440 KJ/mm. The composite surface layer was developed via deposition of ceramic 

particles into AISI Duplex-2205. Based on the experimental results, it was found that the 

composite layer attained a maximum hardness of 1245 Hv from substrate hardness of 250 Hv 

for TIG processed at 0.768 KJ/mm. The cross-sectional view of the melt pool for TIG torch 

melted processed showed a hemispherical shape due to the Gaussian energy distribution of 

the torch which has been known to have high energy intensity in the center region and 

gradually decrease to the boarders of the fluid zone. The microstructure demonstrates the 

formation of the dendrite microstructure due to the complete fusing and re-solidification of 

SiC in the composite layer that contributes to the hardness enhancement. The formation of 

dendrites in the melt pool contributes to the hardness and wear enhancement of AISI Duplex-

2205 which can be used for wear and high temperature applications. 
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Introduction 

 

In recent years, composite surface layers have undergone continuous development as 

a result of the industry's growing demands and standards for surface wear resistance. By 

creating a composite layer on metallic components, it is possible to greatly increase their 

service life while lowering the cost of regeneration or replacement of damaged parts [1-4]. 

High mechanical properties, fatigue and oxidation resistance in extreme conditions, together 

with greater toughness and ductility, are all desirable characteristics of AISI Duplex-2205. 

These alloys are utilized often in a variety of industries, including the aerospace, chemical, 

and energy industries due to the combination of these characteristics [5-6]. However, this 

material experienced a low hardness and wear properties in the application. Due to this, it 

stands for a reason to choose a reinforcing material with excellent thermal stability to ensure 

strong wear resistance including both low and high temperatures. Silicon carbide (SiC) is 

particularly desirable for producing AISI Duplex-2205 composite surface layer because it has 

high hardness and strength, high melting temperature and high thermal stability. 

 

TIG cladding method is commonly utilized for the production of composite surface 

layers. Numerous benefits of this technology include simpler process, low cost establishment, 

flexible in operation and economical in time, which lead to the potential of unique structures 

on the metal surface. These great features provide an improvement of the AISI Duplex-2205 

without changing the chemical composition and characteristics of the base metal. The 

investigation conducted by the earlier researcher revealed the positive impact of TIG torch 

cladding of composite layer on the wear resistance of the steel surfaces [3,4,7]. The 

development of composite layer based on ceramic particles into steel surfaces has a high 

possibility due to formation of new microstructure of these alloys and increased wear 

resistance of the metal surface.  

 

Munoz-Escalona et al. [8] earlier investigated the fabrication of SiC onto 

microalloyed steel surface utilising TIG torch cladding technology. According to the 

findings, the surface hardness of composite layer increased four times higher than substrate 

material. By adopting 75 µm SiC particle size rather than 1 µm SiC particle size, the width of 

the fusion zone was doubled. Another study by Brytan et al. [9] examined the effects of SiC 

powder on ferritic, austenitic, and duplex stainless steel that was melted using a laser surface 

alloying process. According to the findings, the laser alloyed layers created on the surface 

significantly increase wear resistance. Duplex stainless steel demonstrated the highest wear 

resistance. Based on this finding, the previous work has successfully produced an 

improvement of hardness by depositing SiC on materials other than duplex stainless steel and 

a different melting process.  

 

Previous research carried out by Paraye et al. [10] investigated the effect of TiC 

ceramic particles reinforcement on the carbon steel using TIG torch process. As a result, the 

fusion zone's average hardness was 395 Hv, which is around 150% harder than base material. 

The cumulative effect of the deposited TiC particles and bainite microstructures is what gives 

this material its increased hardness. By employing the TIG alloying process, Padhee et al. 

[11] showed that the Al-TiC coating on magnesium alloy enhanced the surface's hardness 

from 60 Hv to 305 Hv. According to the SEM pictures, the TiC particles were dipersed in a 

matrix made up of an alloy of aluminium and magnesium. The dispersion of TiC particles in 

the matrix create a metal matrix-like structure in the composite layer. The aim of the 

following research is the production of AISI Duplex-2205 deposited with SiC ceramic 

particles using the TIG cladding process. This research work was performed to determine the 
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influence of microstructure on the hardness behavior of AISI Duplex-2205 composite layer 

via deposition of SiC ceramic particles by TIG torch cladding. 

 

 

Materials and Methods 

 

For the development of composite coating of AISI Duplex-2205, the SiC was initially 

placed on a substrate material with dimension size of 50 mm × 33 mm × 10 mm. Japanese 

companies of Outokumpu, Mitsui, Sumitomo, Tokyo has provided the AISI Duplex-2205 as 

a substrate material. This grade was chosen because it is less expensive and lighter than AISI 

316L (pressure vessels). Additionally, AISI Duplex-2205 grades make for about 85% of the 

current duplex manufacture (Charles). In order to create a smooth surface for the sample, the 

surface of the substrate material underwent a milling technique to eliminate any undesirable 

material, such as swarf and production residues.  

 

This study used silicon carbide (SiC) of 60 µm particle sizes to enhance the surface 

characteristics of AISI Duplex-2205.  The SiC was deposited on the surface material for 

surface modification prior to TIG torch cladding. The SiC paste was created by adding 

distilled water (H2O), two drops of polyvinyl acetate (PVA) and one drop of alcohol. The 

paste form was then applied to the surface material and heated in the furnace for 1 hour while 

maintaining a temperature of 80 °C in order to dry out the SiC paste and guarantee that the 

ceramic particles remained consistently to the substrate surface during the TIG torch cladding 

process. The flow diagram of the sample preparation of this work is shown in Figure 1.  

 

 

 
 

Figure 1: Flow diagram of the sample preparation for the deposition of SiC ceramic particles 

on the AISI Duplex-2205 surface. 

 

The TIG welding equipment used to execute the TIG torch cladding includes a motion 

device that regulates the arc's movement at a specified rate between 1 and 2 mm/s. In order to 

cover the molten zone from oxidation and maintain the arc, a constant supply of high-quality 
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argon gas was also supplied into the molten pool throughout the scanning of the TIG arc at a 

rate between 15 and 25 L/min. Figure 2 depicts the experimental setup for TIG alloying 

utilising AISI Duplex-2205 and a layer of pre-deposited SiC on the AISI Duplex-2205. By 

varying the operating arc energy for 0.480, 0.768, and 1.440 KJ/mm, a various trial 

experiments were conducted to determine the best TIG torch cladding for composite layer 

development as shown in Table 1. 

 

 
 

Figure 2: Schematic Diagram of the TIG torch Machine Experimental Setup 

 

 

Table 1: Process parameter used in the experiment of TIG torch process for composite 

coating of AISI Duplex-2205 

 

Exp. no. 

 

SiC particle size 

 

Arc energy 

1 
 

 

60 µm  

0.480 KJ/mm 

2 0.768 KJ/mm 

3 
1.440 KJ/mm 

 

After development of the TIG torch composite layer on AISI Duplex-2205, the cross-

section of the composite layer was segmented using wire EDM for scanning electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), micro-hardness measurement and 

melt pool geometry. Figure 3 shows the cross-section image of the real sample for 

characterization analysis. Prior to hardness testing and SEM examination, the cross-section 

was polished according to standard metallography procedures. Energy dispersive 

spectroscopy was used to analyze the elemental distribution (EDS). A Vickers micro-

hardness tester was used to measure the micro-hardness values on the surface of the 

composite layer of AISI Duplex-2205. 
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Figure 3: Image of the cross section of the real sample for characterization analysis 

 

 

Results and Discussion 

 

Microstructural and Elemental Analysis 

 

 Figure 4 shows the SiC ceramic with 60 µm size particle before the TIG welding 

process. The microstructure is observed under SEM machine with a magnification of X270. 

The SiC ceramic particles formed in various shapes consist of cubic and hexagonal structures.  

 

Figures 5(a) to (c) illustrate the microstructural characteristics of AISI Duplex-2205 

composite layer at various arc energy. For the EDX spectra results, all figures were labelled 

with zone A, B, and C. Based on the microstructural characteristics, it was discovered that the 

integration of SiC ceramic particles on AISI Duplex-2205 through TIG torch cladding, which 

leads to the development of dendritic microstructure, finally developed the hard surface of the 

composite layer. 

 

 
 

Figure 4: SEM micrograph of SiC ceramic with 60 µm particle size 

 

It was discovered that the SiC particles not fused during TIG surfacing when 0.480 

KJ/mm of arc energy was used, as shown in Figure 5(a). Due to the low arc energy, SiC did 

not fuse the way it should have, which caused variations in the precipitation of SiC particles 

not fused and fully fused through resolidification. In addition, the melt fluid thickens at this 

Cross section of 

the sample 
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lower arc energy, which allows melting to freeze in a relatively short period of time, delaying 

the probability of SiC particles completely precipitated in the composite layer [12].  

 

The carbide precipitation with dendritic microstructure was severely observe with fine 

and highly populated form at the middle of the fluid zone at operating condition  of 0.768 

KJ/mm, as presented in Figure 5(b). According to earlier study by Maleque et al. [13], this 

phenomena encourages the material's hardness to be increased. Mridha & Dyuti [14] 

provided a similar explanation of the use of a carbon steel substrate with reinforced titanium 

powder during TIG torch melting. According to the surface hardness finding, dendritic 

development seems to be leading to increases in hardness (next section). Due to the high arc 

energy, the SiC particles dispersed in the liquid zone of the composite layer. 

 

                     
  

 
 

Figure 5: SEM images of AISI Duplex-2205 composite surface layer for sample processed at 

arc energy of (a) 0.480 KJ/mm, (b) 0.768 KJ/mm and (c) 1.440 KJ/mm 

 

Due to a suitable heat source and significant substrate DSS and SiC dilution, the SiC 

in the AISI Duplex-2205  composite layer completely fused. The temperature variations in 

the liquid zone at the different location across the liquid zone are what cause the variance in 

carbide precipitation and dendritic structure. Prior research by Buytoz [15] claimed that the 

dendritic structure developed as a result of the significant discrepancy between the melting 

temperatures of iron and other phases created by the dissociation of SiC. According to past 

investigations by Zeng et al. [16], the stirring of the liquid zone by convection and Marangoni 

effects is another cause for the formation of dendritic structure.  

 

The composite surface layer at a heat energy of 1.440 KJ/mm is depicted in Figure 

5(c). The sample took longer time to solidify when it melted at a greater arc energy because 
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more SiC ceramic particles were dispersed in the melt pool. This phenomena is comparable 

to earlier research by Maleque and Adeleke [12]. The thicker dendritic microstructures may 

form more quickly due to the SiC ceramic particles has the potential to dispersed more 

quickly due to the high fluidity of the melting layer. It also demonstrates the lower density of 

dendritic growth in this melted layer, which is quite significant compared to earlier research 

by Bello et al. [17]. 

 

Figures 6(a) to (c) depicts the EDX spectra for the composite surface layer of AISI-

Duplex-2205. It can be shown that the Si and C content acquired the percentages of 4.56% 

and 7.93%, respectively, at minimal arc energy of 0.480 KJ/mm (zone A in Figure 5(a)). As 

shown in Figure 6(b), the value raised to 11.11% for Si and 13.24% for C with greater arc 

energy of 0.768 KJ/mm, which was retained within the dendritic structure at zone B. The 

sample showed a lower proportion of Si (5.66%) and C (8.564%) at zone C in Figure 5(c) at 

maximum arc energy of 1.440 KJ/mm. 

 

  
 

 

 

Figure 6: EDS analysis of AISI Duplex-2205 composite surface layer for sample processed 

at arc energy of (a) 0.480 KJ/mm, (b) 0.768 KJ/mm and (c) 1.440 KJ/mm 

 

 

Surface Hardness and Melt Pool Geometry.  

 

The top surface hardness of the AISI Duplex-2205 composite surface layer performed 

at various arc energy of 0.480 KJ/mm, 0.768 KJ/mm, and 1.440 KJ/mm is shown in Table 2. 

The lowest hardness value was obtained at arc energy of 0.480 KJ/mm by considering three 

different arc energies. This is related to the SiC particles' blend of incomplete and partial 

melting with substrate material and low dendritic growth population, as illustrated in Figure 

5(a) (SEM result). It was inappropriate to use this minimal arc energy to accomplish melting 

the SiC ceramic particles in the substrate material. According to a similar explanation by 

Wang et al. [18], the melt pool's shrinking population of dendritic structures and altered 

coarse dendrite formation structure are the key causes of the hardness reduction. 

Element Weight % 

Si 4.56% 

C 7.93% 

 

Element Weight % 

Si 11.11% 

C 13.24% 

 

Element Weight % 

Si 5.56% 

C 8.64% 

 

a 

c 

b 
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The highest hardness of 1245 Hv was generated in the composite surface layer after 

manufactured with arc energy of 0.768 KJ/mm. As can be observed in Figure 5(b), the 

increased population of fine dendritic structure in the fluid zone is really provided the 

enhancement of hardness. However, the hardness value decreased to 673.6 Hv when 

manufactured at greater arc energy of 1.440 KJ/mm. This reduced hardness may be the result 

of a dendritic population that is less dense than that of a sample manufactured at 0.768 

KJ/mm. This decrease in hardness value was caused by the combination of half fused and 

completely fused of SiC ceramic particles. The dissolving of SiC particles by vigorous 

agitation of the liquid zone with greater arc energy may also be the cause of the lower 

hardness development. Higher arc energy during melting resulted in more dilution and less 

SiC particle dispersion, which may be the cause of the reduction of hardness value. These 

hardness levels may have dropped because of the rapid speed of SiC particle dissolution. This 

outcome is in line with earlier research by Mridha et al. [19] employing low alloy steel that 

deposited with TiC ceramic particle using a TIG torch method. 

 

Table 2 lists the melt depth of AISI Duplex-2205 composite surface layer at various 

arc energy. As can be seen, the melt depth improved as the arc energy increased from 0.480 

KJ/mm to 1.440 KJ/mm, with a value between 1010 m and 1540 m. This outcome is 

consistent with the earlier research by Adeleke and Maleque [20]. Figures 7(a) to (c) 

demonstrate the hemispherical shape in the cross-section of the composite surface layer. Such 

a hemispherical melt shape is produced by the torch's Gaussian energy distribution, which is 

known to have high energy intensity in the centre and progressively diminish to the borders 

of the fluid zone. Mridha et al. [19] also made a similar finding with this circumstance.  

 

Table 2: Top surface hardness and melt pool dimension of AISI Duplex-2205 composite 

surface layer for sample processed at different arc energy 

Arc energy 

(KJ/mm)  

Melt depth (µm) Top surface hardness 

(Hv) 

0.480 1010 650 

0.768 1180 1245 

1.440 1540 673.6 

 

 

Figure 7 represents a cross-sectional view of a melt pool with a smooth surface, 

suggesting that the composite layer and the substrate material had a strong metallurgical 

interaction. The melt pool of the samples generated a smooth surface free of significant flaws 

at the processed composite layer with arc energy of 0.480 KJ/mm and 0.768 KJ/mm, as 

illustrated in Figures 7(a) and (b). However, as shown in Figure 7(c), several pores and cracks 

were found in the sample after processing at an arc energy of 1.440 KJ/mm. These flaws are 

probably the result of sluggish cooling and a high fluidity melt during the solidification 

process. Porous regions developed because the viscous melt was incapable to fill the pores. 

The releasing gas also created surface pores in the centre area, but these were quickly covered 

up by relatively less viscous melt in the area. Other research also gives support to this 

explanation.  
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Figure 7: Cross sectional view of melt geometry of AISI Duplex-2205 composite layer for 

sample processed at arc energy of (a) 0.480 KJ/mm, (b) 0.768 KJ/mm and (c) 1.440 KJ/mm 

 

 

Conclusions 

 

The composite layer of AISI Duplex-2205 deposited with SiC ceramic particles using 

TIG torch cladding was successfully implemented on the hardness improvement. Further 

finding of the work can be summarized as following: 

 

• The microstructural observation revealed that the integration of SiC ceramic particles 

with AISI Duplex-2205 leads to the development of dendritic microstructure and different 

population in the composite layer depending on the arc energy.  

• The increment of hardness of the composite layer contributed from the formation of the 

dendritic microstructure consists of SiC ceramic particles. 

• The highest hardness value of 1245 Hv achieved for composite layer processed at arc 

energy of 0.768 KJ/mm due to formation of dendritic structure with high population in 

the composite layer.  

• At higher arc energy of 1.440 KJ/mm, a lower hardness value of 676.3 Hv obtained is due 

to a lower population of dendritic structures with several pores and cracks found in the 

composite layer.  
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