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Abstract. The application of aluminide coatings using the slurry aluminizing process has
attracted significant attention in industry to enhance the corrosion resistance of structural
materials exposed to severe environmental conditions. Nevertheless, several challenges have
emerged, including the migration of aluminium from the coating into the substrate and
mismatched in the coefficient of thermal expansion (CTE). To address these issues, 304 SS
was chosen as the substrate due to its superior compatibility with the coating in terms of CTE.
The objective of this project is to investigate the influence of various temperatures and
durations on the formation of aluminide coatings containing alumina. The aluminide coating
was created through a slurry aluminizing procedure, which involved mixing a slurry composed
of 70% Al and 30% Al2O3 with polyvinyl alcohol (PVA). This coating was uniformly applied
to the substrate. Subsequently, the coated samples underwent different heat treatment
conditions, specifically at temperatures of 650 °C, 680 °C, and 700 °C, for durations ranging
from 4 to 10 hrs. Detailed characterization of aluminide coating morphology, energy-dispersive
X-ray (EDX), phases, porosity, and corrosion behaviour were evaluated using scanning
electron microscope (SEM), X-ray diffraction (XRD), optical microscope (OM) and linear
polarization (NOVA 1.7 software). Analysis using energy-dispersive X-ray (EDX) and X-ray
diffraction (XRD) techniques revealed the presence of FeAls formation at the outermost layer
and the development of the FeAl phase within the interdiffusion zone (IDZ). Remarkably, the
samples that underwent heat treatment at 700 °C for 10 hours displayed significantly enhanced
corrosion resistance. Consequently, the aluminide coating developed on 304 SS, characterized
by the presence of the FeAl phase, demonstrates substantial potential for use as an effective
protective coating.
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Introduction

Austenitic stainless steels are susceptible to corrosion when exposed to aggressive
corrosive conditions, such as aqueous environments, high temperatures, stress, and various
service conditions. To address this issue, there is a focus on altering the surface properties of
these steels by creating corrosion-resistant coatings. Surface modification of stainless steel with
aluminide layers has gained significant importance due to its industrial feasibility and cost-
effectiveness in enhancing corrosion resistance [1-2]. The penetration of aluminium into the
substrates can form dense and stable protective alumina in a high-temperature environment,
which improves corrosion resistance properties [3]. Aluminide coatings exhibit exceptional
oxidation resistance because they can develop protective scales [4-5]. Slurry aluminizing has
garnered increasing interest for coating large components due to its ease of manufacturing,
environmental friendliness, and cost-effectiveness [6]. Among aluminide coatings, iron
aluminide coatings created through slurry aluminizing on austenitic stainless steel are
particularly favoured. This preference is attributed to their superior mechanical properties and
low coefficient of thermal expansion (CTE) when combined with aluminide coatings.

Consequently, the likelihood of crack formation in the coating is reduced on austenitic
steels because of the closer match in CTE between the austenitic stainless steel and the coating
[6]. Furthermore, the depletion of aluminium in these coatings poses a challenge to the long-
term performance of aluminide coatings. This depletion occurs due to the inward diffusion of
aluminium into the substrate, leading to the precipitation of segregation phases at high
temperatures instead of the growth of an alumina scale on the outer layer. To address this issue,
Javan et al. [7] introduced alumina particles as inert fillers to reduce the local melting and
sintering of aluminium particles. The ratios of Al, Si, and Al2O3 affect the microstructure of
the coating [8]. While some research has explored the use of alumina along with other variables
like temperature and duration, that could potentially impact the process and growth kinetics of
aluminide coating development. This project aimed to examine the development of aluminide
coatings enriched with Al203 on 304 stainless steel surfaces. This investigation involved
subjecting the steel to various temperatures and times via slurry aluminizing. The analysis
encompassed an assessment of the coating's surface morphology, chemical composition, the
identification of compound phases formed, and an evaluation of the coating's corrosion
resistance.

Material and Methods

The substrate material used in this study was 304 stainless steels. Initially, the
specimens underwent manual grinding and degreasing through immersion in an ultrasonic bath,
followed by rinsing with distilled water. Subsequently, the samples were dried using a hot air
dryer after the cleaning process. The slurry used in this process consisted of a mixture of
powder and binder. A beaker containing distilled water was placed on a hot plate stirrer and
heated to a temperature of 85 °C, that is close to the glass transition temperature of PVA. PVA
powder was then added to the water, and the stirring process continued to ensure complete
dissolution of the PVA. Following this, aluminium (Al) and aluminium oxide (Al203) were
gradually introduced to the binder mixture and homogenized using a magnetic stirrer. The
prepared slurry was subsequently poured into a gravity-fed, air-pressurized spray gun. The
slurry was uniformly sprayed onto the substrate, and this spraying process was repeated twice.
The first and second coated samples were weighed to ensure that a total mass/area ratio fell
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within the range of 15 to 30 mg cm™. Following the completion of two cycles of the coating
process, the samples were left to dry in ambient air for one hour before undergoing a heat
treatment process. The samples were then subjected to thermal treatment in an argon gas
atmosphere with a heating rate of 10 °C per minute. The thermal treatment consisted of two
steps:1) the specimens were heated in a furnace at 400 °C for one hour to cure the binder and
2) the specimens were heated at various temperatures of 650 °C, 680 °C, and 700 °C, for
durations of 4, 6, 8, and 10 hours. The cross-section morphology of aluminide coating was
observed using scanning electron microscope (SEM) while the elemental composition was
measured using energy dispersive X-ray spectroscopy (EDX). The phases present in the
aluminide coating then was determined wusing X-ray Diffraction (XRD).
Potentiostat/galvanostat was utilized to determine the corrosion rate. In addition, ImagelJ
software was used to examine the porosity of the aluminide coating from image captured using
optical microscope (OM).

Results and Discussion

SEM Morphology and EDX Analysis

Figures 1, 2 and 3 show the SEM cross-section image of aluminide coating after heat
treated. The image shows the aluminide layer developed at 4 hours was discontinuous and non-
uniform. However, at 10 hours, a continuous and uniform aluminide coating was formed. The
results are influenced by the presence of aluminium atoms diffusing into the substrate's surface.
However, ensuring a consistent concentration of aluminium atoms on the surface is a bit
challenging. To address this, allowing sufficient time for the atoms to diffuse leads to a gradual
increase in the thickness of the coating [1] SEM cross-section image for aluminide coated
sample heat treated 680 °C for 4, 6, 8 and 10 hours are presented in Figure 4. The image shows
the aluminide phases such as Fe2Als, FesAl and FeAl layer was developed in the coating of
which increases in thickness in prolonged heat treatment and time. Similar results are shown
in [9]. The aluminide coating was continuous and uniform with increasing time from 4 to 10
hours. EDX analysis was carried out for sample heat treated for 10 hours and it was found that
the outer and inner layers were enriched with aluminium concentration, implying that Al-rich
intermetallic compounds, FeAls, were formed. The phase transformation of aluminide coating
commences with the formation of FeAls, which, upon prolonged soaking, evolves into Fe2Als,
then followed by FeAl [10]. Additionally, findings from [10] revealed a substantial decrease in
the concentration of FeAls after 8 hours of heating, whereas in this project, the presence of
FeAls was still detectable even after 10 hours of heating. Thus, indicating a suppression of
Fe:Als growth. Furthermore, a thin light grey layer in the interdiffusion zone (IDZ) separated
the coating and the substrate was confirmed as FeAl phase (Figure 5 and Table 1). The result
was further supported by XRD analysis (Figure 6).

133



Muhammad Affifi Jalaluddin et al. Malaysian Journal of Microscopy Vol. 19, No. 2 (2023), Page 131-140

N x300 300 um N x300 300 um

Figure 1: SEM cross-section image of aluminide coating heat-treated at 650 °C for (a) 4
hours and (b) 10 hours

N x300 300 um AL D57 x300 300um

Figure 2: SEM cross-section image of aluminide coating heat-treated at 680 °C for (a) 4
hours and (b) 10 hours

A x300 300 um A x300 300 um

Figure 3: SEM cross-section image of aluminide coating heat-treated at 700 °C for (a) 4
hours and (b) 10 hours
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Figure 4: SEM cross-section image of aluminide coating heat-treated at 680 °C for (a) 4
hours, (b) 6 hours, (c¢) 8 hours and (d) 10 hours
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Figure S: (a, c) SEM cross-section images and (b, d) EDX of substrate heat-treated at 680 °C
for 10 hours
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Table 1: EDX chemical composition of spectrum 1, and 2 for sample heat-treated at 680 °C
for 10 hours

Element Spectrum 1 Spectrum 2
wt.% at.% wt.% at.%
C 1744  38.60 1525 37.73
Al 42890 4226 30.14 33.19
Cr 7.26 3.71 7.70 4.40
Fe 31.97 1522 3586  19.08
Ni 0.45 0.20 11.05 5.59

Total 100.00 100.00 100.00 100.00

a FeAl, (00-069-0296)

b Cr (04-007-8594) ;
¢ FeNi (00-003-1016)

d Fe (00-034-0529)

e FeAl (04-002-1309)
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Figure 6: XRD analysis of sample heat-treated at 680 °C for (i) 4 hours, (ii) 6 hours, (iii) 8
hours, and (iv) 10 hours

Porosity Measurement

Porosity measurements were conducted on specimens subjected to heat treatment (650
°C, 680 °C, and 700 °C) for durations of 8 and 10 hours, respectively. Surface morphology of
the coating was acquired using an optical microscope, as depicted in Figure 7. Subsequently,
ImageJ software was employed to analyse the porosity measurement by calculating the
percentage of the porous area.
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Figure 7: Surface morphology of the sample after heat-treated

Figure 8 shows the average area of porosity, which was calculated based on twenty
measurements. Interestingly, there is no substantial difference in the average area of porosity
among all the samples. However, there is an increasing trend in porosity as both the heat
treatment temperature and duration were raised. The sample that underwent heat treatment at
700 °C for 10 hours exhibited the highest area percentage of porosity, reaching a value of
69.1%. In contrast, the sample subjected to heat treatment at 650 °C for 8 hours displayed the
lowest area percentage of porosity, with a value of 60.27%.
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Figure 8: Percentage porosity area of sample after heat-treated at (a) 650 °C (b) 680 °C and
(c) 700 °C

The inward diffusion of Al particles in the coating is responsible for the formation of
pores. The amount of pores was affected by the rate of Al diffusion during the heat treatment
process [10-11]. According to the Arrhenius equation, the diffusion rate is generally
temperature dependent. Because the diffusion rate of Al is faster at higher temperatures, the
area percentage porosity of the sample that was heat treated from 650 °C to 700 °C increased.
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Furthermore, Kepa et al. [12] and Yener et al. [13] reported that heat treatment time
increased the amount of porosity. According to Yener et al. [14], the porosities observed
thickened and penetrated deeper with longer durations. The obtained results are consistent with
previous studies.

Corrosion Behaviour of Aluminide Coating

Corrosion assessments were carried out on selected samples after heat treatment as
shown in Figure 9. Meanwhile, Table 2 presents the corrosion data for the samples treated for
8 and 10 hours at 650 °C, 680 °C, and 700 °C. Based on Table 2, it is evident that the corrosion
rate displays a decreasing trend as the temperature and time of heat treatment increases.
Specifically, the sample treated at 700 °C for 10 hours exhibited the lowest corrosion rate of
0.0280 mm/year. Conversely, the highest corrosion rate was recorded for the sample subjected
to heat treatment at 650 °C for 8 hours, which reached 0.218 mm/year. This observation
indicates that a lower corrosion rate corresponds to a higher resistance of the aluminide-coated
sample against corrosion.
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Figure 9: Tafel plot for sample heat-treated at 650 °C, 680 °C and 700 °C for 8 hours
and 10 hours

Table 2: Corrosion data for sample heat-treated at 650 °C, 680 °C and 700 °C for 8 hours and

10 hours
Sample Ecorr (V)  ILecorr (nA)  Corrosion rate (mm/year)
Temperature (°C) Time (hours)
650 8 -1.0284  21.2610 0.2184
10 -1.2146 149140 0.1532
680 8 -1.0522 9.1196 0.0937
10 -0.6688 7.8516 0.0806
700 8 -0.7023 2.7247 0.0464
10 -0.6709 1.6438 0.0280
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Conclusions

The aluminide coatings were successfully developed on samples that underwent heat
treatment at various temperatures and times. These coatings exhibited a consistent composition,
with both the outer and inner layers predominantly composed of FeAls, while a thin layer of
FeAl phase formed in the interdiffusion zone (IDZ) of the coating. Notably, the aluminide
coating thickness increased with higher aluminizing temperatures and longer treatment times.
The incorporation of Al2Os3 effectively mitigated the inward diffusion of aluminium and
facilitated the growth of the FeAl layer. Furthermore, the sample subjected to 700 °C for 10
hours displayed remarkable corrosion resistance, as evidenced by its lower corrosion rate
compared to the other specimens.
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